Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa).

نویسندگان

  • Xiaoxiao Wang
  • Wencheng Wang
  • Jianliang Huang
  • Shaobing Peng
  • Dongliang Xiong
چکیده

Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt-stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt-stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc ) of rice leaves. Decreased A in salt-stressed leaves was mainly attributable to low Cc , which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt-stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity-tolerant rice cultivars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress

The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance,...

متن کامل

Correction: Photosynthetic Diffusional Constraints Affect Yield in Drought Stressed Rice Cultivars during Flowering

Global production of rice (Oryza sativa) grain is limited by water availability and the low 'leaf-level' photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productiv...

متن کامل

Protective effect of exogenous nitric oxide on alleviation of oxidative damage induced by high salinity in rice (Oryza sativa L.) seedlings

To find the protective role of exogenous nitric oxide (NO) on salinity-stressed rice seedlings, a CRD-based factorial experiment with three replications was conducted in Agronomy Laboratory of the Faculty of Agricultural Sciences, University of Guilan, in 2012. The experimental design consisted of healthy and vigorous seedlings of two rice cultivars, Khazar and Goohar, the last already known as...

متن کامل

Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress

Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to...

متن کامل

Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza)1[W][OA]

The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 access...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiologia plantarum

دوره   شماره 

صفحات  -

تاریخ انتشار 2017